Simple λ-Reducer

Please enter a λ-term:
Supported abbreviations:
id: λx. x
true: λt. λf. t
false: λt. λf. f
Y: λf. (λx. f (x x)) (λx. f (x x))
n: Church-Numeral n (e.g. 0 = λs. λz. z, 1 = λs. λz. s z)
succ: λn. λs. λz. s (n s z)
pred: λn. λs. λz. n (λg. λh. h (g s)) (λu. z) (λu. u)
plus: λm. λn. λf. λx. m f (n f x)
minus: λm. λn. (n pred) m
mult: λm. λn. λf. m (n f)
isZero: λn. n (λx. false) true
leq: λm. λn. isZero (minus m n)
lt: λn. λm. leq n m (leq m n false true) false)
divides: λn. λm. Y (λdivides. λa. λb. isZero b true (lt b a false (divides a (minus b a)))) n m
isPrime: λn. isZero (pred n) false (Y (λisPrimeUpTo. λn. λacc. isZero (pred acc) true (divides acc n false (isPrimeUpTo n (pred acc)))) n (pred n))